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Abstract. This paper presents a retrospective of our experiences with
applying theorem proving to the verification of SPARK programs, both
in terms of projects and the technical evolution of the language and tools
over the years.
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1 Introduction

This paper reflects on our experience with proving properties of programs written
in SPARK[2] - a programming language and verification toolset that we have
designed, maintained, sold, and used with some success for nearly 20 years.

2 Projects and Technologies

The following sections present a retrospective on the use of theorem proving in
SPARK, roughly alternating between technical developments in the language
and tools and the experiences of various projects, coming from both our own
experience and that of a selection of external SPARK users in industry.

2.1 Early Days - 1987ish

It all started in about 1987. Our predecessors at the University of Southampton
and then PVL had designed and implemented a Hoare-logic based verification
system for a subset of Pascal[9]. Their next goal seemed almost absurdly bold - to
design a programming language and verification system that would offer sound
verification for non-trivial programs, but be scalable and rich enough to write
“real world” embedded critical systems. The base language chosen was Ada83,
and through judicious subsetting, semantic strengthening, and the addition of
contracts, SPARK (the “SPADE Ada Ratiocinative Kernel” - we kid you not)
was born, with a first language definition appearing in March 1987.



The highest priority design goal was the provision of soundness in all forms of
verification. This led to a need for a completely unambiguous dynamic semantics,
so that the results of verification would be reliable for all compilers and target
machines, and so that all valid SPARK programs would be valid Ada programs
with the same meaning and also, at a stroke, removing the need for us to produce
a “special” compiler for SPARK.

The toolset consisted of three main tools

– The Examiner. This consists of a standard compiler-like “front-end”, fol-
lowed by various analyses that check the language subset, aliasing rules,
data- and information-flow analysis, then (finally) generation of verification
conditions (VCs) in a language called FDL - a typed first-order logic that
has a relatively simple mapping from SPARK. The VCs generated include
those for partial correctness with respect to preconditions, postconditions
and loop-invariants, but also (lots of) VCs for “type safety” such as the
freedom from buffer overflow, arithmetic overflow, division by zero and so
on.

– The Checker. This is an interactive proof assistant for FDL. It emerged from
of one of the team’s PhD research[19]. Written in PROLOG.

– The Simplifier3. This is an heuristic, pattern-matching theorem prover, based
on the same core inference engine as the Checker. It started out as a way of
literally “Simplifying” VCs (a bit) before the real fun could start with the
Checker, but as we will see, it grew substantially in scope and power over
the years.

2.2 SHOLIS Project

Our first attempt at serious proof of a non-trivial system came with the SHO-
LIS project in 1995, by which time PVL and the SPARK technology had been
acquired by Praxis (now Altran UK). This was the first effort to meet the re-
quirements of the (then) rather onerous Interim version of the UK’s Def-Stan
00-55 for critical software at Integrity Level “SIL4”.

SHOLIS is a system that assists Naval crew with the safe operation of heli-
copters at sea, advising on safety limits (for example incident wind vector on the
flight deck, and ship’s roll and pitch) for particular operations such as landing,
in-air refuelling, crew transfer and so on.

The SHOLIS software[16] comprised about 27 kloc (logical) of SPARK code,
54 kloc of information-flow contracts, and 29 kloc of proof contracts, plus some
tiny fragments of assembly language to support CPU start-up and system boot.
There was no operating system and no COTS libraries of any kind - a significant
simplification at this level of integrity, and a programming model that SPARK
was explicitly designed to support.

The SHOLIS code generated nearly 9000 VCs, of which 3100 were for func-
tional and safety properties, and 5900 for type safety. Of the 9000 total, 6800

3 Not to be confused with Greg Nelson’s better-known Simplify prover.



(75.5 %) were proven automatically by the Simplifier, with the remaining 2200
being “finished off” using the interactive Checker.

The experience was painful. Computing resource was scarce; one UNIX server
(shared by the whole company) was used for all the proof work. Simplification
times for a single subprogram were measured in hours or days.

A key output was the identification of the need to support state abstraction
and refinement in SPARK proofs. This mechanism is used in SPARK to control
the volume of states that are visible, and hence has a direct impact on the
complexity and size of contracts and the “postcondition explosion” problem.
This was implemented (too late for SHOLIS), but had a major impact on later
projects.

2.3 C130J Project

The Lockheed-Martin C130J is the most recent generation of the enormously
successful “Hercules” military transport aircraft. The Mission Computer appli-
cation software is written in SPARK, and was subject to a large verification
effort in the UK as part of the acquisition of the aircraft by the UK RAF.

Verification consisted of full-blown SPARK analysis, including verification of
partial correctness for most critical functions with respect to the system’s func-
tional specification, which was expressed using the “Parnas Tables”[20] notation.

Unusually, the “proof” component of the work was performed in the UK in
the late 1990s after the formal testing (to meet the objectives of DO-178B Level
A) of the Mission Computer.

Results from the development phase of the project are best reported in [18]
while the results of the later proof work (and comparisons of the SPARK code
with other systems and programming languages) can be found in [13].

2.4 Improving the VCG and Simplifier

Both the SHOLIS and C130J projects led to a serious analysis of how we could
improve the completeness of the Simplifier. Analysis identified a number of key
areas where improvement was sorely needed:

– Tactics for unwrapping and instantiation of universally quantified conclu-
sions, especially those that commonly arise from arrays in SPARK.

– Modular (aka “unsigned”) arithmetic - very common in low-level device
driver code, ring buffers, cryptographic algorithms and so on.

– Tracking the worst-case ranges of integer expressions.

These were implemented in 2002. We also spent effort on improving the VC
Generator (VCG) itself - it turns out it’s only too easy for the VCG to produce a
VC that omits some vital hypothesis so that no prover could prove it, no matter
how clever. Ever more detailed and precise modelling of the language semantics
inside the VCG continues to this day.



Finally, we noted one other factor that critically impacted the usefulness
of the proof system - the “proof friendliness” of the code under analysis. This
seemed to correlate with common software engineering guidance - simplicity, low
information-flow coupling, and proper use of abstraction to control the name-
and state-space of any one subprogram. In short - we were learning how to write
provable programs, so we started to set a goal for projects to “hit” a particular
level of automatic proof (e.g. 95 % of VCs discharge automatically), making the
proof a design-level challenge rather than a retrospective slog.

2.5 Tokeneer Project

Tokeneer is an NSA-funded demonstrator of high-security software engineering.
We were given a clean-sheet to work from, so the project deployed various forms
of formal methods, including a system specification and security properties in Z,
and implementation in SPARK[1].

This was the first time we had attempted to prove non-trivial security prop-
erties of a software system with SPARK. Owing to the budget, the system was
small (only about 10 kloc logical, producing 2623 VCs), but critically, 2513 of
those were proven automatically (95.8 %), with only 43 left to the Checker and
67 discharged by review (i.e. we looked at them really hard).

Unusually (and some years later, in 2008) the NSA granted a licence that
effectively allowed a fully “open source” release of the entire Tokeneer project
archive. It remains the focus of various research efforts[28].

2.6 Speeding Up and Going FLOSS

With the emergence of cheap multi-core CPUs, we implemented an obvious
improvement to the Simplifier in 2007 - the ability to run the prover on several
VCs at once in parallel. It turns out the VCG generates lots of small, simple VCs
which are completely independent of one another, so are ripe for parallelization.
This almost wasn’t a conscious design goal in 1990ish, but came as a pleasantly
surprising benefit.

The results are dramatic. On a modern (2013-era) quad-core machine, the
entire SHOLIS software can be re-proven from scratch in about 11 minutes, with
only 440 undischarged VCs (compare with weeks and 2200 undischarged VCs in
the original project).

Secondly, in 2009 we took the dramatic step, in partnership with AdaCore,
to “go open source”, with the entire toolset moving to a FLOSS development
model and GPL licence, as a way of promoting interest, teaching and research
with the language.

2.7 User-defined rules

In response to customer demand, we implemented an approach for users to
write and “insert” additional rules or lemmas into the Simplifier to “help” it



with particularly tricky VCs, or in areas where its basic reasoning power proved
insufficient.

This approach opens an obvious soundness worry (users can write non-
sensical rules), but does offer an attractive middle-ground between the onerous
use of the Checker and the rather relaxed idea of just “eyeballing” the undis-
charged VCs to see if they look OK. Additionally, a single well-written rule can
be written once but used thousands of times by the Simplifier, so the effort to
get the rules right should pay off. Finally, the Checker be used to verify the
soundness of a user-defined rule from first principles if required.

2.8 iFACTS Project - Scaling up

Starting in 2006, the implementation of the NATS iFACTS system is the most
ambitious SPARK project to date.

iFACTS augments the tools available to en-route air-traffic controllers in
the UK. In particular, it supplies electronic flight-strip management, trajectory
prediction, and medium-term conflict detection for the UK’s en-route airspace,
giving controllers a substantially improved ability to plan ahead and predict
conflicts in a sector[21].

The project has a formal functional specification (again expressed mostly in
Z), and the majority of the code (about 250 kloc logical lines of code, as counted
by GNATMetric) is implemented in SPARK. Figure 1 illustrates that the pro-
portion of SPARK contracts is minor compared to the bulk of the executable
code and comments (and whitespace).
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Fig. 1. Project size in physical lines of code (counted with wc -l).

Proof concentrates on type-safety, but not functional correctness, since the
system has stringent requirements for reliability and availability - in short, the
software must be proven “crash proof”.

The current operational build produces 152927 VCs, of which 151026 (98.76 %)
are proven entirely automatically by the Simplifier alone. User-defined rules are



used for another 1701 VCs, with only 200 proved “by review”. This remains the
highest “hit rate” for automatic proof with SPARK that we have ever encoun-
tered.

The proof is reconstructed daily (and overnight), and developers are under
standing orders that all code changes must prove OK before code can be com-
mitted into the CM system. Developers who “break the proof” receive a terse
notification the following morning.

2.9 Reaching out - SMT and Counterexamples

Licensing SPARK under the GPL has also made it much easier to collaborate
with academia, and we have seen two useful improvements for SPARK 2005 as
a result of this.

Alternative provers. The existing automatic theorem prover for SPARK was
good (98.76 % on well written code), but due to its nature had difficulties dis-
charging certain VCs. Paul Jackson from the University of Edinburgh has written
Victor[15], a translator and prover driver to allow SMT solvers to be used with
SPARK. As SMT solvers are fundamentally different from rewrite systems such
as the Simplifier, they are able to easily discharge many of the VCs the Simplifier
cannot deal with.

For some projects, such as SPARKSkein, using a modern SMT solver allowed
100 % of all VCs to be discharged automatically. Victor is now shipped with
SPARK.

Counterexamples. The existing SPARK proof tools were all geared towards
proving VCs. As a consequence it was difficult (and thus time-consuming, and
thus expensive) to distinguish between true VCs that could not be proved due
to prover limitations and false VCs due to specification or programming errors.

Riposte [24] is the counter-example generator for SPARK that was developed
under a joint project with Martin Brain (University of Bath, now Oxford). This
tool provides helpful counter-examples, and can even be used as a proof tool as
it is sound, so the lack of a counter-example guarantees none exist (although the
tool is incomplete, so sometimes a counter-example might be generated where
none exists).

2.10 SPARKSkein Project - Fast, Formal, Nonlinear

In 2010, we implemented the Skein[25] hash algorithm in SPARK. The goal was
to show that a “low-level” cryptographic algorithm like Skein could be imple-
mented in SPARK, be subject to a complete proof of type safety, be readable
and “obviously correct” with respect to the Skein mathematical specification,
and also be as fast or faster than the reference implementation offered by the
designers, which is implemented in C.



The proofs of type safety turned out to be quite tricky. Firstly, finding the
correct loop invariants proved difficult, and this was compounded by the plethora
of modular types and non-linear arithmetic in the VC structures. Of the 367
VCs, 23 required use of the Checker to complete the proof - not bad but these
still required a substantial effort to complete. Full results from the project are
reported in [7]. All sources, proofs and tests have been released under GPL and
can be obtained here[26].

One final unexpected side-effect was the discovery of a subtle corner-case
bug in the designers’ C implementation (an arithmetic overflow, which leads to
a loop iterating zero times, which leads to an undefined output).

2.11 CacheSimp - Speeding up even more

In an industrial context, verification time is not just a number, it has a signif-
icant qualitative effect on how verification tools are used and thus on project
management. If verification takes 4 hours, then a developer has to organise their
working day around this activity. If the same activity can be done in 30 minutes
or less then this has a significant and positive impact on how the tools are used
(and often mistakes are found much earlier).

Figure 2 shows that a single proof run of iFACTS takes around 3 hours
(green line with squares) on a fast desktop computer, regardless of how big the
actual change is (blue bars). We implemented a very simple caching system [6]
in around 250 lines of code using memcached [12], where each invocation of the
proof tools first checks if the result is already known. As the memcached server
was run on a separate computer accessible to all developers, this system was
both incremental and distributed, leading to an average 29-fold speedup (red
line with circles) and a strong correlation to the size of the change.
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Fig. 2. Results showing the effects of using a simple caching system



2.12 Reaching out - Interactive Provers

One particular SPARK user, secunet, kept pushing the boundaries of what was
reasonable to achieve using automated verification, and what was expressible
using the simple first order logic constructs available in SPARK annotations.
Stefan Berghofer (from secunet) implemented a plug-in for Isabelle/HOL that
allows one to express much richer properties using SPARK proof functions [4]
and complete the proof in Isabelle. They have kindly released their work under
a free software license, including a fully verified big-number library which they
have used to implement RSA. Given the recent OpenSSL “Heartbleed”[17] bug,
this importance of this contribution should not be underestimated.

2.13 Muen Project

This project[27] span off from the work of secunet. Muen is a FLOSS separtion-
kernel for the x86 64 architecture, but unusually, almost the entire kernel is
written in SPARK - something we might have considered impossible some years
ago. The kernel code is subject to an automated proof of type-safety. We look
forward to further results from this group.

3 Future Trends

This final section reflects on two topics - the future of SPARK, and the role
that theorem-proving evidence can play in the wider context of regulation and
acceptance of critical software.

3.1 Technologies and Languages - SPARK 2014

Despite many positive experiences, SPARK and the use of the proof tools remain
a challenge for many customers - the “adoption hurdle” is often perceived as
too high. Secondly, it became clear to us that improving the Simplifier had
become a game of diminishing returns, and it was time to move to more modern
proof technologies. Finally, the arrival of Ada 2012 brought contracts into the
mainstream Ada syntax, so it was time to “reboot” both the language design
and underlying technologies.

Since 2012, we have been working with AdaCore to produce SPARK 2014.
The language is based on Ada 2012, and uses its native “aspect” notation for
all contracts. The language subset permitted is much larger, including variant
records, generic units, dynamic types, and so on. The new toolset is based on the
full GNAT Pro Ada front-end (part of the GCC family), a new information-flow
analysis engine (based on analysis of program-dependence graphs[11, 14]), and a
new proof system that uses the Why3 language and VCG[5] and modern SMT
solvers such as Alt-Ergo[8] and CVC4[3]. The new tools also bring a significant
improvement in the area of floating point verification: where the old tools used
an unsound model using real numbers, the new tools employ a sound encoding;



current versions use an axiomatised rounding function. We feel that a transition
to the upcoming SMTLIB floating-point standard will bring many benefits, in
particular preliminary experiments (with the University of Oxford) using SMT
solvers implementing ACDL [10] have shown promise.

SPARK 2014 also (perhaps unusually) takes the step of unifying the dynamic
(i.e. run-time) and static (i.e. for proof) semantics of contracts, so that they can
be proved, or tested at run-time (as in, say, Eiffel), or both - providing some
interesting possibilities for mixing verification styles and/or mixing languages
(i.e. programs partly written in SPARK, Ada, C, or anything else) in a single
program.

Both the “Pro” (supported) and “GPL” (free, unsupported) versions of the
SPARK 2014 toolset will be available before this conference.

3.2 Assurance and Acceptance for Critical Systems

Over the years, both customers and regulators have taken a variety of stances on
the use of strong static analysis and theorem proving in critical software. Some
regulators remain sceptical, perhaps owing to the novelty of the idea or the
perceived unreliability (i.e. unsoundness) of common “bug finding” style static
analysis tools.

The future looks bright, though, in the aerospace with the advent of DO-
178C[22] and its formal methods supplement DO-333[23] which explicitly allows
“formal methods” as a combination of an unambiguous language and analysis
methods which can be shown to be sound. Additionally, DO-178C allows later
verification activities (e.g. testing) to be reduced or eliminated if it can be argued
that formal analytical approaches have met the required verification objective(s).
This supports (we hope) a strong economic incentive for the adoption of more
formal and static approaches.

We look forward to the day when software will be delivered with its proofs,
which can be re-generated at will by the customer or regulator, perhaps even by
diverse verification tools. That would surely move us towards a claim to being a
true engineering discipline.
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Reynolds, A., Tinelli, C.: Cvc4. In: Computer aided verification. pp. 171–177.
Springer (2011)

4. Berghofer, S.: Verification of dependable software using SPARK and isabelle. In:
SSV. pp. 15–31 (2011)
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